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1. Introduction

The brane tiling model [1 – 6], a.k.a. dimer model, has proved to be a powerful tool to

analyze the class of four dimensional, superconformal quiver gauge theories arising from

D3-branes probing toric Calabi-Yau three-fold (CY3) cones. Over the past few years,

systematic methods that map a brane tiling to the associated toric CY3 cone (forward

algorithm [1]) and vice versa (inverse algorithm [4, 5]) have been firmly established. The

brane tiling model has been used to study aspects of the quiver gauge theories such as

marginal deformations [7 – 9], counting BPS states [10 – 18], and partial Higgsing [2, 19 – 21].

It has also found interesting applications to the recent study of supersymmetry breaking

of metastable vacua and their embedding into string theory [22 – 24].

Recently, the idea of the brane tiling model was applied to three dimensional supercon-

formal theories arising from M2-banes probing toric CY4 cones [25]. A three dimensional

counterpart of the tiling model emerged and was named a crystal model. Throughout this
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Figure 1: The forward/inverse algorithms.

paper, we will distinguish the D3/CY3 model from the M2/CY4 model by referring to the

former as the tiling model and the latter as the crystal model. The notion of a dimer is

equally relevant to both models.

The goal of this paper is to elaborate on the properties of the crystal model. We begin

with a brief review of the construction of the crystal model [25] in section 2. In sections

3 and 4, we generalize the inverse/forward algorithms of the tiling model to the crystal

model. We find that the forward algorithm can be carried over to the crystal model with

little modification. The inverse algorithm also shares many essential features with that of

the tiling model, but there are some crucial differences that require additional work. In

section 5, we show in detail how the crystal model correctly reproduces the spectrum of

the BPS meson states. We conclude with some discussions in section 6.

2. Review of the crystal model

We begin with a stack of N M2-branes near the tip of a CY4 cone X. In the near horizon

limit, the R
1,2 world-volume directions of the M2-branes and the radial direction of X merge

to form an AdS4 and the base (unit radius section) of X becomes the internal 7-manifold

Y . We say X is the cone over Y , or X = C(Y ). The crystal model assumes that X is toric,

so we first recall some relevant aspects of toric geometry. See, for example, [26, 27, 14] for

more information on toric geometry in this context.

2.1 Toric CY4

We follow the notation of [25, 28] for toric geometry. The CY4 cone X is a quotient of C
d for

some d ≥ 4. Given some integer-valued charge matrix QI
a (I = 1, · · · , d; a = 1, · · · , d − 4),

the quotient is taken by

X =

{

∑

I

QI
a|ZI |2 = 0

}

/(ZI ∼ eQI
aθa

ZI). (2.1)

The toric diagram is a convex polyhedron composed of a set of lattice points {vi
I} ∈ Z

4

(i = 1, · · · , 4) satisfying

∑

I

QI
av

i
I = 0. (2.2)
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Figure 2: A toric diagram (solid line) is a convex polyhedron with integer-valued vertices in R3.

Its graph dual (dotted line) gives the fan diagram.

The CY condition is
∑

I QI
a = 0, which leads the vI to be on the same Z

3 subspace. It is

customary to choose a basis to set v4
I = 1 for all I.

The toric diagram defines a solid cone ∆ ≡ {yi ∈ R
4; (vI ·y) ≥ 0 for all I}. We call the

boundary components SI ≡ ∆ ∩ {vI · y = 0} the 3-fans. Two 3-fans meet at a 2-fan and

several 2-fans join at a 1-fan. These fans are graph dual to the original toric diagram in

the sense that each vertex vI is associated to a 3-fan, each edge connecting two neighboring

vertices, wIJ = vI − vJ , corresponds to a 2-fan, etc. The cone X is a T 4 fibration over ∆.

The fiber is aligned with the base in such a way that it shrinks to T n on the n-fans.

The moduli space of Kähler metrics on X is parameterized by the Reeb vector bi ∈ R
4,

which defines the base of the cone by Y = X ∩{b ·y = 1/2}. In the basis mentioned above,

the CY condition fixes b4 = 4. The volume of Y as an explicit function of vI and b is

known [27, 10]. The Ricci-flat metric is obtained by minimizing the volume with respect

to bi with the range of bi/4 being precisely the toric diagram.

For later purposes, we recall that a baryon in the CFT3 is mapped via AdS/CFT to

an M5-brane wrapping a supersymmetric 5-cycle of Y [29]. Each 3-fan SI dual to a vertex

vI defines a 5-cycle which is the T 3 fibration over SI ∩{b ·y = 1/2}. We abuse the notation

a bit and use SI to denote either the 3-fan or the 5-cycle depending on the context. It

was shown in [3] that H5(Y, Z) = Z
d−4 with d being the number of internal vertices in

the toric diagram, and that a set of basis {Ca} ⊂ H5(Y, Z) can be chosen such that that

SI = QI
aCa, where QI

a is precisely the charge matrix defining the CY4. The baryons SI

are said to be charged under the baryonic symmetries Qa. The baryons are also charged

under the four U(1) isometries Fi of X, called the flavor symmetries. There are also d− 4

baryonic symmetries Qa. We normalize the charges of the the baryons to be Fi[S
I ] ≡ NF I

i ,

Qa[S
I ] ≡ NQI

a with N being the number of M2-branes. They satisfy the toric relations

vi
IF

I
j = δi

j and vi
IQ

I
a = 0 [28]. The U(1)R charge is the linear combination of the flavor

charges R = 1
2biFi, where bi is the Reeb vector. The toric relations and the CY condition

(b4 = 4) implies that
∑

I RI = 2 and
∑

I F I
i = 0 for i = 1, 2, 3. The value of each RI is

proportional to the volume of SI [29] and can be computed following [27, 14].

– 3 –
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Figure 3: Toric diagrams, Reeb vectors and R-charges of some simple examples of CY4.

Figure 3 lists the toric diagrams for the examples of CY4 we will consider in this

paper. The orbifolds in examples (b,c,d) are defined as follows. For C
2/Z2, the Z2 group

acts as (z1, z2) → (−z1,−z2). For (C3/Z2 × Z2) × C, the two Z2 groups act on C
3 as

(z1, z2, z3) → (−z1,−z2, z3) and (z1, z2, z3) → (z1,−z2,−z3). In example (d), C(T 1,1) is

the famous conifold whose base T 1,1 is the coset space SU(2)× SU(2)/U(1). Examples (e)

and (f) are CY4 counterparts of the conifold, in the sense that the base Q1,1,1 and M3,2 are

– 4 –
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0 1 2 3 4 5 6 7 8 9 11

M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ Σ

Table 1: The brane configuration for the CFT3. Away from the origin of R3(345), the special

Lagrangian manifold Σ is locally a product of a 2-plane in R3(345) and a 1-cycle in T 3(678).

coset spaces SU(2)3/U(1)2 and SU(3)×SU(2)/SU(2)×U(1) [30]. They have been studied

in the context of AdS/CFT correspondence in [31 – 38].

In figure 3, we included the Reeb vector components bi/4 (i = 1, 2, 3) and the R-charges

RI of the baryons SI . For C
4 and its orbifolds, RI = 1/2 for the four corners the toric

diagrams and zero for other vertices. The RI for the other three examples are written in

the diagrams. Note that the vertices related by discrete symmetries have the same RI .

2.2 The crystal model

The crystal model follows from a T-duality of M-theory. It parallels the derivation of the

tiling model using T-duality of IIB string theory [2, 39]. We take the T-duality transforma-

tion along T 3 ⊂ T 4 aligned with the y1,2,3 coordinates. This corresponds to x6,7,8 directions

in table 1 below. By T-duality, we mean the element t in the SL(2, Z) × SL(3, Z) duality

group which acts as t : τ ≡ C(3) + i
√

gT 3 → −1/τ . The stack of N M2-branes turns into a

stack of N M5-branes wrapping the dual T 3. We call them the T -branes. The degenerating

circle fibers turn into another M5-brane extended along the (2+1)d world-volume and a

non-trivial 3-manifold Σ in R
3 × T 3. We call it the Σ-brane. The result is summarized in

table 1.

The brane configuration preserves supersymmetry if and only if the M5-branes wrap

special Lagrangian submanifolds of R
3 × T 3 = (C∗)3. Clearly, the T-branes are special

Lagrangian as it is calibrated by ImΩ, where Ω is the holomorphic three-form Ω = (dx3 +

idx6)∧ (dx4 + idx7)∧ (dx5 + idx8). Demanding that the Σ-brane be calibrated by the same

ImΩ, we learn that Σ is locally a plane in R
3 and a 1-cycle in T 3. We will say more about

the geometry of Σ in section 3.

In analogy with the tiling model, the content of the CFT3 is expected to be encoded in

the intersection locus between the T -branes and the Σ-brane projected onto the T 3. The

result is a graph in the T 3 which we call the crystal lattice. As in the tiling model, the

graph consists of edges and vertices which we call bonds and atoms to distinguish them

from similar objects in the toric diagram. In [25], the simplest examples of the crystal

were presented, and a few general properties of the inverse algorithm were stated without

detailed explanation. We will study both the inverse and forward algorithms in sections 3

and 4, respectively, illustrating the ideas with the examples listed in figure 3.

One of the central result of [25] is that the fundamental excitations of the CFT3 are

the M2-discs whose boundary encircles the bonds of the crystal lattice. The derivation of

the M2-disc picture made use of the smooth transition from a baryon to N fundamentals,

inspired by a related work in the tiling model [39]. Using this picture, the super-potential

terms and the F-term conditions of the crystal model were identified.

– 5 –
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Figure 4: Amoeba for C3.

As an application of the crystal model, it was shown in [25] how to account for the

spectrum of BPS meson operators using the M2-disc picture. In the original CY4, the

mesons are KK momentum modes. The T-duality transforms them into closed membranes.

The R-charge and the flavor charges of a meson can be determined by decomposing it into

elementary M2-discs. It is consistent with the known results on the BPS spectrum of chiral

mesons from the geometry side [10 – 12]. In section 5, we will explain the details of this

matching with explicit computations for a few examples.

3. Inverse algorithm

In this section, we generalize the inverse algorithm of the tiling model [4, 5] to the crystal

model. The notion of amoeba and alga projections again plays an important role.

3.1 Review of the tiling model

In the tiling model, the T-duality maps the degenerating circle fibers into an NS5-brane

wrapping a holomorphic surface Σ in (C∗)2. The surface is given by the Newton polynomial,
∑

(a,b)

c(a,b)u
avb = 0, (u, v) ∈ (C∗)2. (3.1)

where the sum runs over the vertices of the toric diagram. The projection of Σ onto R
2

is called the amoeba and the projection onto T 2 is called the alga [5]. The amoeba is a

thickened (p, q)-web. Each leg of the (p, q)-web asymptotes to a cylinder. If the legs get

pulled in toward the center, the amoeba can be regarded as a punctured Riemann surface.

The genus of the Riemann surface is equal to the number of internal points of the toric

diagram [5].

The alga provides the key to the inverse algorithm. The boundaries of the alga are the

1-cycles associated to the legs of (p, q)-web. The tiling is obtained as the 1-cycles shrink

into the interior of the alga and merge with one another. In practice, the inverse algorithm

often works without actually taking the alga projection. One begins with drawing all

1-cycles and tries to shrink merge them to obtain a consistent tiling.

Since the alga and the amoeba are just two different projections of the same holo-

morphic surface, a simple map relating the two should exist. The map was found in [5]

– 6 –
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Figure 5: Alga and the inverse algorithm for C3.

Figure 6: Untwisting. Two discs whose boundaries are identified represent a two-sphere. The

crosses denote the punctures encircled by the 1-cycles.

and named the untwisting. When any two of the 1-cycles intersect in the alga, one locally

untwists the intersection to obtain a new configuration. The result is precisely the amoeba.

Figure 6 shows how the untwisting works for C
3.

3.2 Geometry of Σ

As in the tiling model, we expect that the projections of the special Lagrangian manifold

Σ will play a crucial role in the crystal model. As explained in section 2, supersymmetry

requires that Σ be locally a product of a plane in R
3 and a 1-cycle in T 3. Moreover, in

order for Σ to be calibrated properly, the plane corresponding to a (p, q, r) 1-cycle should

be orthogonal to a (p, q, r) vector in R
3. Since Σ must be completely determined by the

toric data, it is not difficult to guess what the planes and the 1-cycles are. Each edge

wIJ = vI − vJ of the toric diagram and the 2-fan orthogonal to the edge naturally give the

plane/1-cycle pair.

– 7 –
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Figure 7: A part of the toric diagram. Each edge of the toric diagram corresponds to a 2-fan in

R
3 and a 1-cycle in T 3. Suppressing the radial direction, the 2-fans form the dual toric diagram.

Just as the amoeba in the tiling model is a thickened (p, q)-web and the boundary of

the alga gave the (q,−p) 1-cycles, we expect that the amoeba and the alga projections

of the special Lagrangain manifold Σ in the crystal model will give a thickened 2-fans

in R
3 paired with 1-cycles in T 3. Unfortunately, to our knowledge, an explicit equation

describing the shape of the special Lagrangian manifold Σ is not known,1 but we can get

some intuition from the following consideration.

Recall that the holomorphic surface for the tiling model was given by the Newton

polynomial. If we write down the Newton polynomial for a CY4 as in (3.1) but with three

C
∗ variables, it is locally a product of a plane in R

3 and a 2-cycle in T 3. We now take the

mirror of the (C∗)3, that is, T-dualize along the T 3-fiber of (C∗)3, then we obtain a dual

(C∗)3. If there were a D4-brane wrapping the holomorphic surface in the original (C∗)3,

then it would be transformed into a D3-brane wrapping a special Lagrangian submanifold

of the dual (C∗)3. We conjecture that this is precisely the Σ we are looking for. We should

warn the readers that we are using mirror symmetry as a tool to relate a manifold to

another, and it has nothing to do with the physical symmetry of the crystal model.

In the tiling model, it was useful to represent the amoeba as a punctured Riemann

surface. The punctures are the points at infinity along the legs of the (p, q)-web. In the

crystal model, we can also think of the amoeba of Σ as a 3-manifold with some defects.

As we shrink the 2-fans along the radial direction, the ‘points at infinity’ form a locally

one dimensional defect. The 1-cycles paired with the 2-fans are localized along the defects.

Globally, the defect is isomorphic to the dual toric diagram. As we will see in the next

subsection, when the toric diagram has no internal points, the amoeba has the topology of

a three-sphere apart from the defect. It will be important to find out the topology of the

amoeba in the general case in order to complete the inverse algorithm.

3.3 The alga and the crystal

We now put together the contents of the previous two subsections to find the inverse

algorithm for the crystal model. It is natural to expect that the alga projection of Σ onto

1We thank D. Joyce for a correspondence on this point.
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Figure 8: Each edge of the toric diagram gives a 1-cycle in the T 3. The 1-cycles define certain

solids. The 1-cycles bend into the solids and merge to form the bonds and atoms of the crystal.

Figure 9: The crystal for C(Q1,1,1) has the NaCl structure.

T 3 will again reveal the structure of the intersection between the Σ-brane and the T -branes.

With no explicit equation describing Σ, we cannot derive the alga from a first principle.

Nevertheless, in analogy with the tiling model, we can guess the shape of the alga and

make consistency checks later.

Each edge of the toric diagram gives a 1-cycle in the T 3. Unlike in the tiling model,

the 1-cycles generically do not intersect with each other. In order to fix the positions of

the 1-cycles in the T 3, we make the following observation. When several edges form a

boundary of a face of the toric diagram, the total homology charge of the corresponding

1-cycles vanish. Since the 2-fans meet with each other, the 1-cycles can join each other

and be deformed smoothly into a vanishing cycle. Therefore, we require that the 1-cycles

associated to a same face of the toric diagram intersect with one another in the T 3. In the

simplest cases, this requirement is sufficient to construct the alga of a given CY4. Figures 8

and 9 show the alga and the crystals for C
4 and C(Q1,1,1).

These crystals are particularly simple because all lattice points of the toric diagram

are corners, that is, they do not lie in the interior, on the surfaces, or along the edges.

In fact, when the toric diagram is a convex subset of a unit cube, there is a one-to-one

correspondence between the vertices of the toric diagram and the bonds of the crystal.

Note that figure 3(e) also falls into this class.

Applying the algorithm to orbifolds of C
4 leads to slightly more complicated crystals.

Figure 10 shows the crystal for (C3/Z2 × Z2) × C whose toric diagram is in figure 3(d).

Note that, compared to the C
4 case, the toric diagram is enlarged by a factor of 2 in the

– 9 –
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Figure 10: The crystal for (C3/Z2 × Z2) × C.

Figure 11: The crystal for (C2/Z2)
2.

x and y directions, while the unit cell in the crystal is twice as large in the z direction.

So, in contrast to the tiling model, it is not straightforward to obtain the crystal for

(C3/Zm × Zn) × C for arbitrary m and n.

Figure 11 shows the crystal for another orbifold, (C2/Z2)
2. Again, the crystal structure

for the orbifolds is the same as that of C
4, except that the unit cell is twice as large. The

basis vectors of the new unit cells in terms of those of C
4 are (0, 0, 1), (1,−1, 0), (1, 1,−1).

3.4 Untwisting and the amoeba

In the tiling model, the untwisitng map reflects the fact that the real and imaginary parts of

a holomorphic function are related to each other through the Cauchy-Riemann condition.

As the special Lagrangian manifold Σ is a ‘mirror’ of a holomorphic surface, we expect

that an analog of the untwisting map exists.

It is indeed possible to untwist the alga to obtain the amoeba which has all the prop-

erties we discussed earlier. Just as in the tiling model, the untwisting flips the orientation

of the space transverse to the bond of the crystal. See figure 12. We apply the untwisting

map to the alga of C
4, we obtain the amoeba depicted in figure 13. Note that the dual

toric diagram is a tetrahedron as expected. The 1-cycles are localized along the dual toric

diagram as they should be. Applying the untwisting map to C(Q1,1,1) yields a similar

result, with the dual toric diagram being a cube.

The untwisting map for the orbifolds is more non-trivial. The dual toric diagrams have

– 10 –
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Figure 12: Untwisting the crystal.

Figure 13: Amoeba for C
4. We represent a three-sphere as the union of two balls with the surfaces

identified. The dotted lines on the balls denote defects.

Figure 14: The dual toric diagram and its embedding into the amoeba for (C3/Z2 × Z2) × C.

double-lines because some points of the toric diagrams sit on the edges. It is a priori not

clear how the double line should split in the amoeba. The untwisting map answers the

question.

4. Forward algorithm

The forward algorithm of the tiling model as described in [1] is based on two related notions,

namely, perfect matchings and the Kasteleyn matrix. In this section, we show that the

– 11 –
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Figure 15: The dual toric diagram and its embedding into the amoeba for (C2/Z2)
2.

Figure 16: Perfect matchings of the crystal for C4

same tools work equally well for the crystal model with little modification.

4.1 Perfect matchings

The concept of perfect matchings plays a crucial role in the forward algorithm. A perfect

matching is a subset of bonds of the crystal, such that every atom of the crystal is an end-

point of precisely one such bond. The bonds in each perfect matching carry an orientation.

We choose to orient the arrows to go from a white atom to a black one.

In the tiling model, perfect matchings are known to have several nice properties. In

this section, we show that the same is true of the crystal model. We focus on two of the

main features:

1. Each perfect matching can be located in the toric diagram. The relative coordinate in

the toric diagram between two perfect matchings pα and pβ is given by the homology

charge of (pα − pβ) regarded as a one-cycle in T 3.

2. The perfect matchings solve the ‘abelian’ version of the F-term condition for the

chiral fields Xi associated to the bonds, if we set

Xi =
∏

α

p〈Xi,pα〉
α , (4.1)

where 〈Xi, pα〉 equals 1 if pα contains the bond Xi and 0 otherwise.

– 12 –
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Figure 17: Perfect matchings of the crystal for (C2/Z2)
2 projected onto the xy-plane. The short

double lines on X7, X8 means that they go over different unit cells in the z-direction.

Instead of giving a general proof, we illustrate the idea with simple, but non-trivial,

examples. When the crystal contains only two atoms, as is the case for C
4 and C(Q111),

each and every bond in the crystal corresponds to a perfect matching. Figure 16 shows the

four perfect matchings of the C
4 crystal and how they are associated to points on the toric

diagram. For any pair of perfect matchings pα and pβ, the oriented path (pα − pβ) forms

a one-cycle in T 3. The homology charge translates into the relative coordinate between

the two points corresponding to pα and pβ. Since there are only two atoms, the F-term

condition equates the product of all bonds meeting at an atom with the same product at

the other atom. So, the abelian F-term condition is trivially satisfied.

The map between perfect matchings and points in the toric diagram becomes less

trivial as the number of atoms increases. Figure 17 shows the eight perfect matchings of

the (C2/Z2)
2 crystal and their location in the toric diagram. The F-term condition states

that the product of bonds meeting at any atom is the same. Labeling the bonds as in the

figure, the condition reads

X1X2X3X4 = X3X4X5X6 = X5X6X7X8 = X7X8X1X2. (4.2)

It is easy to check that (4.1) solves this constraint. Explicitly,

X1 = p1p2, X2 = p3p4, X3 = p5p6, X4 = p7p8,

X5 = p2p4, X6 = p1p3, X7 = p6p8, X8 = p5p7. (4.3)

The relation (4.1) also allows us to determine the charges of the fields Xi. The corners

of the toric diagram correspond to baryons, and their charges can be computed from

the volume of the associated supersymmetric 5-cycles. If we assign the charges to the

corresponding perfect matchings and set the charges of other perfect matchings to zero,

then (4.1) determines the charges of the fields Xi. Moreover, the super-potential terms

contain each and every corner precisely once, so that their R-charges are always 2.

As a final remark, we note that just as in the tiling model, one can use the Kasteleyn

determinant as a generating function of the perfect matchings.
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4.2 Relation between the linear sigma model and the associated crystal

From the toric diagram of C(Q1,1,1) in figure 3, one has the following toric vertices

v1 = (1, 0, 0, 1), v2 = (0, 1, 0, 1), v3 = (1, 1, 0, 1),

v4 = (0, 0, 1, 1), v5 = (1, 0, 1, 1), v6 = (0, 1, 1, 1). (4.4)

From the relation (2.2) one can easily find the charges of the linear sigma model fields σI

corresponding to vI since in this case there are one to one correspondence between the

perfect matchings and the vertices of the toric diagram. The charge vectors for σI are

given by

Q1 = (1, 1,−1,−1, 0, 0),

Q2 = (0, 0, 1, 1,−1,−1). (4.5)

The two charge assignments are the usual ones for the sigma model describing C(Q1,1,1).

If we go to more complicated examples such as C
2/Z2 × C

2/Z2, we have eight per-

fect matchings so that the symplectic quotients are described by U(1)4 gauge theory with

suitably charged matters. One can obtain the charge matrices for eight perfect matching

fields again using the relation (2.2). However there are ambiguities in the charge assign-

ments since one can think of various different U(1) combinations in describing the same

symplectic quotients. In the tiling model, the charge assignments arise naturally. The

linear sigma model fields are suitable combinations of bifundamental fields appearing in

the D-branes located in the considered Calabi-Yau singualrities. Here the relation between

the fundamental excitations of membrane and the linear sigma model fields is not clear.

We introduce the fields assigned with bonds and they are related to the prefect matchings.

It is desirable to understand this issue better.

4.3 Trivalent atoms and non-uniqueness of the crystal

In the tiling model, a vertex with only two edges correspond to a mass term in the gauge

theory. Integrating out the mass term translates into shrinking the vertex and the two

edges away completely from the tiling. It is likely that the same is true of the crystal

model, since as we will discuss in the next section, the atoms of crystals are interpreted as

super-potential terms.

Unlike in the tiling model, trivalent atoms of the crystal model also deserve special

attention. As discussed in section 2, in the inverse algorithm, the atoms appear from solid

components of the alga. A proper three dimensional solid has at least four vertices, which

means that the resulting atom should have at least four bonds. It is still conceivable that

trivalent atoms appear as the solid is somehow ‘squashed’ to lie in a plane. In fact, we

have found several crystals with trivalent atoms. Although the inverse algorithm suggests

that they are rather unnatural, so far we have not found any physical inconsistency to rule

them out.

The first example of a crystal with trivalent bonds comes from the orbifold C
2/Z2×C

2

whose toric diagram is given in figure 3(b) and crystal depicted in figure 18. It is easy to

– 14 –
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Figure 18: The crystal for C2/Z2 × C2.

Figure 19: The two crystals for C(T 1,1) × C.

check that the crystal can reproduce the toric diagram with the perfect matching. The

R-charges can be assigned to the bonds as before.

Another interesting example is C(T 1,1)×C. Its toric diagram is described in figure 3(e).

This is our first example having two different crystals; see figure 19. The crystal (a) is

derived from the inverse algorithm just as the C
4 and C(Q1,1,1) examples discussed in

section 3, and does not contain any trivalent atom. The crystal (b), on the other hand,

contains trivalent atoms only. Both crystals give the same toric diagram as far as the

perfect matching method is concerned.

To determine whether both crystals are physically relevant will require a more thor-

ough understanding of the inverse algorithm. In the tiling model, two or more tilings

corresponding to the same toric diagram are known to be related to each other by Seiberg

duality. So, if two or more crystals are indeed allowed, we will have to find out an analog

of Seiberg duality in the new setup.

The crucial difference between two crystals is that the crystal (a) has two homology

(1, 0, 0) 1-cycles as shown in the figure 19 (red curves), but the other one has only one such

1-cycle. It can be understood that two 1-cycles in the crystal (a) are degenerate in the

crystal (b). In the tiling model, degenerate 1-cycles often lead to inconsistent dimer graphs.

Even though degenerate cycles do not lead to an inconsistent crystal, we may say that the

crystal containing trivalent atoms is more singular based on the degenerate 1-cycles.

– 15 –
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Figure 20: A candidate for the C(M3,2) crystal.

Figure 21: Perfect matchings of the C(M3,2) crystal candidate, projected onto the xy-plane.

We close this subsection with a proposal for the crystal structure of C(M32), whose

toric diagram is given in figure 3(g). With our limited understanding of the inverse algo-

rithm, we have not been able to derive the crystal for C(M3,2) from the toric diagram. It

is still possible to do some guesswork to find a candidate and check whether it gives the

correct toric diagram using the perfect matchings. Figure 20 shows one such candidate.

As shown in figure 21, the perfect matchings do yield the toric diagram of C(M3,2).

However, the crystal consists of trivalent atoms only. If we check the R-charges of

the bonds of the crystal, all six edges of the ‘hexagon’ in the interior of the unit cell are

contained in degenerate 1-cycles in the sense we discussed above. There may exist a more

regular crystal without trivalent atoms. We hope to resolve this issue in a future work.

5. Counting BPS meson states

Counting BPS states is one of the most basic problems in AdS/CFT with supersymmetry.

Very much progress has been made recently in counting states preserving a half of the

supersymmetry in D = 4, N = 1 [40, 41, 10 – 18] or D = 3, N = 2 theories [13, 42].

– 16 –
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Exact partition functions for mesons and baryons have been written down. In the crystal

model, the BPS meson states are represented by closed membrane configurations. In this

section, we explain in detail how the crystal model correctly reproduces the meson spectrum

computed on the geometry side.

5.1 Character functions

Chiral mesons in CFT3 correspond to algebraic (holomorphic polynomial) functions on

the CY4 cone X. They are labeled by integer points m = (m1,m2,m3,m4) in the solid

cone ∆, which are the momentum quantum numbers along the T 4 fiber of X. It follows

immediately that the flavor charges of a meson m are Fi(m) = mi. The R-charge of the

meson is then given by [8, 10, 43]

R(m) =
1

2
biFi(m) =

1

2
(m · b). (5.1)

The spectrum of all mesons is conveniently summarized in the character function [10, 11].

Z(qi;X) ≡
∑

{m}

4
∏

i=1

qmi

i (5.2)

When the CY4 is toric, a closed form of the character function can be read off from the

toric diagram. One draws the graph dual of a triangulation of the toric diagram. The result

is a tetra-valent graph whose external legs are the 1-fans discussed in section 2. Then the

partition functions is given by

Z(qi;X) =
∑

α∈T

4
∏

b=1

1

1 − ∏

q
ai

αb

i

. (5.3)

The sum runs over the vertices of the graph or, equivalently, the simplexes of the triangu-

lation. The product runs over the four edges ~aαb meeting at the vertex α. See [10, 11] for

more details. Applying this formula to the examples of the current paper, we find

C
4 :

1

(1 − q1)(1 − q2)(1 − q3)(1 − q4/q1q2q3)
, (5.4)

C
2/Z2 × C

2 :
1 + q4/q1q2

(1 − q1)(1 − q2)(1 − q3q4/q1q2)(1 − q4/q1q2q3)
, (5.5)

(C2/Z2)
2 :

(1 + q3)(1 + q4/q3)

(1 − q1q3)(1 − q3/q1)(1 − q2q4/q3)(1 − q4/q2q3)
, (5.6)

C
2/(Z2 × Z2) × C :

1 + q4/q3

(1 − q1)(1 − q2)(1 − q3)(1 − q4
2/q1q2q3

2)
, (5.7)

C(T 1,1) × C :
1 − q4/q3

(1 − q1)(1 − q2)(1 − q3)(1 − q4/q1q3)(1 − q4/q2q3)
, (5.8)

and similar expressions for C(Q1,1,1) and C(M3,2). The volume of the base of the cone, Y ,

can be obtained from the character functions [10].

Vol(Y )

Vol(S7)
= lim

t→0
t4Z(e−bit;X = C(Y )). (5.9)
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The value of the Reeb vector which renders Y Einstein (or, equivalently, X Ricci-flat), can

be determined by minimizing the volume [27]. Inserting the value back to the character

function by qi → q
b
i

2 , we find the level surface, that is, we can count the degeneracy of

mesons at each value of the R-charge. For C
4 and its orbifolds, the result is:

C
4 :

1

(1 − q1/2)4
, C

2/Z2 × C
2 :

1 + q

(1 − q)2(1 − q1/2)2
, (5.10)

(C2/Z2)
2 :

(1 + q)2

(1 − q)4
, (C3/Z2 × Z2) × C :

1 + q3/2

(1 − q)3(1 − q1/2)
. (5.11)

For other examples we have been studying, the answer is:

C(T 1,1) × C :
1 + q3/4

(1 − q3/4)3(1 − q1/2)
= 1 + q

1

2 + 4q
3

4 + · · · , (5.12)

C(Q1,1,1) :
1 + 4q + q2

(1 − q)4
=

∑

k

(k + 1)3qk, (5.13)

C(M3,2) :
(1 + q2)(1 + 25q2 + q4)

(1 − q2)4
=

∑

k

(2k + 1)
(3k + 1)(3k + 2)

2
q2k. (5.14)

The last two results agree with other methods used previously to obtain the spectrum [34].

5.2 Mesons as closed membranes

Consider an atom with several bonds. If we add up all the M2 discs localized along the

bonds with a fixed orientation, we obtain a spherical membrane surrounding the atom. In

analogy with the tiling model, we identify such a configuration as a super-potential term

of the CFT3. The R-charge and the flavor charges of the spherical M2-brane is the sum of

the charges of the component M2-discs. The super-potential terms should have R-charge

two and vanishing flavor charges. As pointed out in [25], it is true because (i) every atom

corresponds to a partition covering the entire toric diagram (ii) the sum of charges over all

3-fans is either two (R-charge) or zero (flavor charges) due to the toric relations.

The super-potential terms yield the F-term equivalence relations among the elements

of the chiral ring. As in the tiling model, the relations imply that the sum of terms

corresponding to any two connected atoms are F-term equivalent to zero. Put another

way, a spherical M2-brane wrapping a white atom in the crystal is F-term equivalent

to another M2-brane wrapping a black atom with opposite orientation as illustrated in

figure 22. This is why we painted the atoms in two colors in the first place. Hence the

tiling model and the crystal model share the notions of a bipartite graph and dimers.

We make a short digression to what the crystal model implies for the field theory de-

scription of CFT3. An attempt was made in [34] to write down quiver gauge theories dual to

AdS4×Q1,1,1. The proposed theory contained six chiral superfields (A1, A2, B1, B2, C1, C2),

where Ai, Bi, Ci are doublets under the three SU(2) global symmetries. It was shown that

the Kaluza-Klein spectrum and the baryon spectrum can be reproduced from these fields

if one assumes a certain symmetrization rule. In CFT4, the symmetrization rule follows

from the super-potential through the F-term condition. The authors of [34] found that the
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Figure 22: Super-potential terms as spherical M2-branes surrounding the atoms. The F-term

condition equates a closed M2-brane wrapping a white atom to another M2-brane wrapping a black

atom with the opposite orientation.

unique candidate for the super-potential with the correct quantum numbers vanishes iden-

tically. The crystal model reveals the origin of the problem. The crystal for C(Q1,1,1) has

precisely six fundamental M2-discs that matches the field content mentioned above. Now,

the M2-discs form the super-potential terms over a sphere. This geometry cannot be rep-

resented by a trace of product of matrices; matrices represent strings with two end-points.

The correct description of CFT3 would require an algebraic expression beyond matrices.

Recall that the mesons of CFT3 are KK momentum modes in AdS4 × Y , and are

labeled by integer points m in the solid cone ∆. T-duality transforms the mesons into

closed M2-branes. As shown in [25], the first three components of m define the homology

charge of the 2-cycle in the T 3 that the M2-meson is wrapping. The last component of

m, contributing 2m4 to the R-charge, measures how many times the M2-meson wraps a

super-potential term. The F-term condition ensures that all the M2-meson with the same

value of m are F-term equivalent, regardless of the precise way they wrap the atoms. So

there is a unique meson for each value of m, in accord with the results from the geometric

side we reviewed in the last subsection.

It is instructive to check the main assertions of this subsection in explicit examples.

The mesons of C
4 at R = k/2 form a k-fold totally symmetric tensor representation of the

SU(4) global symmetry. At k = 1, the four mesons are m = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)

and (−1,−1,−1, 1). Figure 23 depicts the 2-cycles representing the mesons, where we again

use colors to denote the orientation of the 2-cycles.

For C(T 1,1) × C, the lowest lying meson has m = (0, 0, 1, 0) and R = 1/2. It has the

same shape as the third meson in figure 23. At the next level, we have four states with

R = 3/4. They are shown in figure 24.

So far, we have considered only the single meson states with arbitrary values of m. In

gauge theory terms, we have concentrated on ‘single trace’ meson operators in the large N

limit. It would be interesting to include baryons and take the finite N effect into account.
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Figure 23: Mesons of C4 with R = 1/2.

Figure 24: Mesons of C(T 1,1) × C with R = 3/4.

6. Discussion

In this paper, we studied in some detail the map between a toric CY4 and the corresponding

crystal model. Compared to the tiling model, the map is incomplete in many aspects. One

of the most important gap to fill in is an explicit description of the special Lagrangian

manifold Σ. If found, it will prove (or disprove) rigorously the assertions concerning the

inverse algorithm and possibly reveal more structures. It may also answer some of the

questions we encountered such as the role of trivalent atoms and the relation between

different crystals for the same CY4.

It is by now well-known that a few simple formulas hold for the tiling model. The

number of tiles is twice the area of the toric diagram. The genus of the amoeba is equal to

the number of internal points of the toric diagram. The total number of edges of the tiling

is given by

∑

I<J

∣

∣

∣

∣

∣

det

(

pI qI

pJ qJ

)∣

∣

∣

∣

∣

, (6.1)

where the sum runs over all legs of the (p, q)-web. It will be nice to find out whether these

relations have a counterpart in the crystal model.

We considered only a limited number of examples in this paper. It is certainly desirable

to study more examples and relations among them. In the study of the tiling model, partial
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resolutions of a CY3 to obtain another less singular CY3 has proved quite useful. In the

simplest case, partial resolution in the tiling model removes some of the edges of the tiling.

A preliminary study shows that the same is true of the crystal model, but a systematic

method is yet to be developed. As in [21], it is likely that the amoeba projection and the

untwisting map will again play an essential role.

Marginal deformation of the CFT3 is another important subject. In [44], the derivation

of the β-deformed geometry of toric CY4 cones tacitly anticipated the crystal model for

CFT3. The same paper also explained how to interpret the phase factors attached to each

terms in the super-potential using a sort of ⋆-product. The ⋆-product involves the flavor

charges of the bi-fundamental fields. It would be interesting to give a similar interpretation

to the β-deformation of CFT3 [44, 37, 38]. To do so, we will need to define an analog of

the ⋆-product for membranes, perhaps along the line of [45].
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